金晓清教授师从固体力学家、美国工程院院士 Leon M. Keer 教授,于 2006 年在美国西北大学获得理论与应用力学方向博士学位。随后与 Q. Jane Wang(王茜)教授合作,从事博士后研究。2013 年 2 月,获选重庆大学“百人计划” 全职回国,加入机械传动国家重点实验室,现担任重庆大学航空航天学院工程力学系主任。研究领域聚焦断裂疲劳、接触力学、摩擦学、微观力学等国际前沿, 已发表学术论文被谷歌学术收录约 100余 篇(http://scholar.google.com/citations?user=5oF2f9IAAAAJ),被引 1100 余次,论文发表于众多力学、摩擦学领域的国际顶级期刊,如 JMPS、IJES、IJP、TribInt 等,与合作者的摩擦学论文获得美国摩擦学家与润滑工程师协会(STLE)2014 年度最近论文奖。为国家自然科学基金、国家留学基金委、多个省市科技委担任项目评审专家,现任我国轴承行业旗舰刊物《轴承》编委,及摩擦学领域国际学术期刊《Frontiers in Mechanical Engineering - Tribology》的评审编委,已为二十多种国际著名学术刊物担任评审工作,并应邀在国内外会议、中美高校、汽车行业公司做报告60余次。作为项目负责人主持国家自然科学基金面上项目2项,中央高校基本科研业务费重点项目3项,及多项重庆市科学基金项目与企业横向项目;参与自然科学基金重点项目1项,国家重点研发计划子课题1项。近两年获得授权发明专利5项,并合作编写专著1部。
1. AMM论文
Gravitational settling of a cell on a high-aspect-ratio nanostructured substrate — an asymptotic modeling approach. Applied Mathematical Modelling,2022,108(8).
doi:10.1016/j.apm.2022.03.041
2. CMAME论文
Multiscale computational framework for predicting viscoelasticity of red blood cells in aging and mechanical fatigue. Computer Methods in Applied Mechanics and Engineering,2022,391.
doi: https://doi.org/10.1016/j.cma.2021.114535
3. JMPS论文
(1) Depth-sensing spherical indentation of an elastic sphere on an elastic substrate. Journal of the Mechanics and Physics of Solids, 2021, 149: 104297.
doi: https://doi.org/10.1016/j.jmps.2021.104297
(2) Collective indentation as a novel strategy for mechanical palpation tomography. Journal of the Mechanics and Physics of Solids, 2020, 143: 104063.
doi: https://doi.org/10.1016/j.jmps.2020.104063
(3) 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. Journal of the Mechanics and Physics of Solids, 2015, 75: 1-44.
doi: https://doi.org/10.1016/j.jmps.2014.11.002
(4) Refined Dugdale plastic zones of an external circular crack. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1127-1146.
doi: https://doi.org/10.1016/j.jmps.2007.10.009
4. IJES论文
(1) Depth-sensing indentation of spherical particles on corrugated substrates — An asymptotic model. International Journal of Engineering Science, 2020, 154: 103349.
doi: https://doi.org/10.1016/j.ijengsci.2020.103349
5. IJP论文
(1) Analytical solution for elastic fields caused by eigenstrains in a half-space and numerical implementation based on FFT. International Journal of Plasticity, 2012, 35: 135-154.
doi: https://doi.org/10.1016/j.ijplas.2012.03.002
6. MoM论文
(1) Analytical and numerical evaluation of the interaction energy between screw dislocation and inhomogeneous inclusion. Mechanics of Materials, 2021, 156: 103788.
doi: https://doi.org/10.1016/j.mechmat.2021.103788
(2) A new fast method for solving contact plasticity and its application in analyzing elasto-plastic partial slip. Mechanics of Materials, 2013, 60: 18-35.
doi: https://doi.org/10.1016/j.mechmat.2013.01.001
7. IJSS论文
(1) Elasto-plastic contact of materials containing double-layered inhomogeneities. International Journal of Solids and Structures, 2017, 126-127: 208-224.
doi: https://doi.org/10.1016/j.ijsolstr.2017.08.006
(2) An efficient approximate numerical method for modeling contact of materials with distributed inhomogeneities. International Journal of Solids and Structures, 2014, 51(19): 3410-3421.
doi: https://doi.org/10.1016/j.ijsolstr.2014.06.005
(3) Numerical methods for contact between two joined quarter spaces and a rigid sphere. International Journal of Solids and Structures, 2012, 49(18): 2515-2527.
doi: https://doi.org/10.1016/j.ijsolstr.2012.05.027
(4) New Green’s function for stress field and a note of its application in quantum-wire structures. International Journal of Solids and Structures, 2009, 46(21): 3788-3798.
doi: https://doi.org/10.1016/j.ijsolstr.2009.07.005
8. European Journal of Mechanics – A/Solids论文
(1) Analytical solution for the displacement of a polygonal inclusion with a special application to the case of linear eigenstrain. European Journal of Mechanics – A/Solids, 2020, 84(10): 104049.
doi: https://doi.org/10.1016/j.euromechsol.2020.104049
9. JAM论文
(1) Explicit analytical solutions for the complete elastic field produced by an ellipsoidal thermal inclusion in a semi-infinite space. Journal of Applied Mechanics, 2018, 85(5): 051005.
doi: https://doi.org/10.1115/1.4039373
(2) On the displacement of a two dimensional eshelby inclusion of elliptic cylindrical shape. Journal of Applied Mechanics, 2017, 84(7): 074501.
doi: https://doi.org/10.1115/1.4036820
(3) Explicit analytical solutions for a complete set of the eshelby tensors of an ellipsoidal inclusion. Journal of Applied Mechanics, 2016, 83(12): 121010.
doi: https://doi.org/10.1115/1.4034705
(4) A closed-form solution for the eshelby tensor and the elastic field outside an elliptic cylindrical inclusion. Journal of Applied Mechanics, 2011, 78(3): 031009.
doi: https://doi.org/10.1115/1.4003238
10. IJF论文
(1) Modeling rolling contact fatigue lives of composite materials based on the dual beam FIB/SEM technique. International Journal of Fatigue, 2016, 83: 201-208.
doi: https://doi.org/10.1016/j.ijfatigue.2015.10.014
(2) Effect of reinforcements on rolling contact fatigue behaviors of titanium matrix composite (TiB+TiC)/Ti–6Al–4V. International Journal of Fatigue, 2014, 66: 127-137.
doi: https://doi.org/10.1016/j.ijfatigue.2014.03.019
11. Engineering Fracture Mechanics论文
(1) A practical method for singular integral equations of the second kind. Engineering Fracture Mechanics, 2008, 75(5): 1005-1014.
doi: https://doi.org/10.1016/j.engfracmech.2007.04.024
12. IJF论文
(1) Numerical simulation of growth pattern of a fluid-filled subsurface crack under moving hertzian loading. International Journal of Fracture, 2007, 142(3): 219.
doi: https://doi.org/10.1007/s10704-006-9026-5
(2) Solution of Multiple Edge Cracks in an Elastic Half Plane. International Journal of Fracture, 2006, 137(1): 121-137.
doi: https://doi.org/10.1007/s10704-005-3063-3
13. Tribology International论文
(1) A thermoelastic contact model between a sliding ball and a stationary half space distributed with spherical inhomogeneities. Tribology International, 2019, 131: 33-44.
doi: https://doi.org/10.1016/j.triboint.2018.10.023
(2) Contact elasto-plasticity of inhomogeneous materials and a numerical method for estimating matrix yield strength of composites. Tribology International, 2018, 127: 84-95.
doi: https://doi.org/10.1016/j.triboint.2018.06.001
(3) Love's rectangular contact problem revisited: A complete solution. Tribology International, 2016, 103: 331-342.
doi: https://doi.org/10.1016/j.triboint.2016.07.011
(4) Numerical EIM with 3D FFT for the contact with a smooth or rough surface involving complicated and distributed inhomogeneities. Tribology International, 2016, 93: 91-103.
doi: https://doi.org/10.1016/j.triboint.2015.09.001
(5) A mesh differential refinement scheme for solving elastic fields of half-space inclusion problems. Tribology International, 2016, 93: 124-136.
doi: https://doi.org/10.1016/j.triboint.2015.09.009
(6) Elasto-plastic indentation of a half-space by a rigid sphere under normal and torque loading. Tribology International, 2013, 62: 141-148.
doi: https://doi.org/10.1016/j.triboint.2013.02.015
14. JoT论文
(1) Novel model for partial-slip contact involving a material with inhomogeneity. Journal of Tribology, 2013, 135(4): 041401.
doi: https://doi.org/10.1115/1.4024548
(2) An efficient numerical method with a parallel computational strategy for solving arbitrarily shaped inclusions in elastoplastic contact problems. Journal of Tribology, 2016, 135(3): 031401.
doi: https://doi.org/10.1115/1.4023948
(3) Numerical modeling of distributed inhomogeneities and their effect on rolling contact fatigue life. Journal of Tribology, 2016, 137(1): 011402.
doi: https://doi.org/10.1115/1.4028406
15. Tribology Transactions论文
(1) A numerical approach for analyzing three-dimensional steady-state rolling contact including creep using a fast semi-analytical method. Tribology Transactions, 2012, 55(4): 446-457.
doi: https://doi.org/10.1080/10402004.2012.667518
16. JoE论文
(1) On the solution of an elliptical inhomogeneity in plane elasticity by the equivalent inclusion method. Journal of Elasticity, 2014, 114(1): 1-18.
doi: https://doi.org/10.1007/s10659-012-9423-0
(2) Numerical implementation of the equivalent inclusion method for 2D arbitrarily shaped inhomogeneities. Journal of Elasticity, 2015, 118(1): 39-61.
doi: https://doi.org/10.1007/s10659-014-9477-2
17. JAP论文
(1) Fatigue initiation and propagation behavior in bulk-metallic glasses under a bending load. Journal of Applied Physics, 2010, 108(11): 113512.
doi: https://doi.org/10.1063/1.3501102
18. 其它相关论文代表作
(1) Semi-analytical solution for steady state heat conduction in a heterogeneous half space with embedded cuboidal inhomogeneity. International Journal of Thermal Sciences, 2019, 139: 326-338.
doi: https://doi.org/10.1016/j.ijthermalsci.2019.02.019
(2) A 3D EHL simulation of CMP: Theoretical framework of modeling. Journal of The Electrochemical Society, 2005, 152(1): G7.
doi: https://doi.org/10.1149/1.1823993
(3) Experiments and FEM simulations of fracture behaviors for ADC12 aluminum alloy under impact load. Metals and Materials International, 2016, 22(6): 1015-1025.
doi: https://doi.org/10.1007/s12540-016-6178-3
19. 部分EI论文
(1) 非均质材料与位错交互能的数值等效夹杂算法.工程力学, 2021.
doi: https://doi.org/10.6052/j.issn.1000-4750.2021.03.0229
(2) 任意形状热夹杂位移场的三角形单元离散算法.力学学报, 2021, 53(1): 205-212.
doi: https://doi.org/10.6052/0459-1879-20-240
(3) 均布激励基本单元解析解的一种记号方法.上海交通大学学报, 2016, 50(8): 1221-1227.
doi: https://doi.org/10.16183/j.cnki.jsjtu.2016.08.013
(4) 二维非均质材料应力场的数值化计算方法. 复合材料学报, 2014, 31(4): 1037-1045.
部分代表性著作
Feodor M.Borodich; Xiaoqing Jin ; Contact problems for soft, Biological and Bioinspired Materials, Springer International Publishing, 2022.
https://link.springer.com/book/10.1007/978-3-030-85175-0