成天宝
发布时间:2019-03-15 | 作者: | 阅读数:

个人简介

成天宝,重庆大学航空航天学院,副研究员,博士生导师。2011年毕业于重庆大学工程力学系,2016年在重庆大学获固体力学博士学位,2016年-2018年在北京理工大学从事博士后研究工作。主要从事超高温材料力学、超高温断裂力学、超高温极端环境下材料力学性能实验研究及仪器研制方面的工作。主持国家自然科学基金面上项目1项、国家自然科学基金青年科学基金项目1项、国家人社部博士后创新人才支持计划项目1项、中国博士后科学基金面上项目1项、重庆市自然科学基金面上项目1项、重庆市人社局出站留(来)渝博士后择优资助项目1项、中央高校基本科研业务费项目1项、国家重点实验室开放课题项目1项、横向项目2项。作为主要技术骨干参与国家自然科学基金重大科研仪器研制项目等10余项重点和重大项目。在AIAA J., AIAA J. Spacecraft Rockets, J. Am. Ceram. Soc., J. Eur. Ceram. Soc., Extreme Mech. Lett., J. Appl. Mech., Appl. Math. Model., Appl. Surf. Sci.等一系列行业内的顶级期刊和权威期刊上发表40余篇SCI论文。


个人情况

姓名:成天宝

单位:重庆大学航空航天学院

学位:工学博士

职称:副研究员

地址:重庆市沙坪坝区沙正街重庆大学A区理科楼305室

邮编:400030

邮箱:tbcheng@cqu.edu.cn


教育背景

  • 2011.09-2016.06,重庆大学,力学系,博士

  • 2007.09-2011.06,重庆大学,力学系,学士


工作履历

  • 2019.05-0000.00,重庆大学,航空航天学院,副研究员、博导

  • 2018.11-2019.05,重庆大学,航空航天学院,副研究员

  • 2016.06-2018.11,北京理工大学,先进结构技术研究院,博后


研究领域

  • 超高温材料力学

  • 超高温断裂力学

  • 超高温极端环境下材料力学性能实验研究及仪器研制


讲授课程

  • 材料力学

  • 工程力学

  • 基础力学综合与提高


项目情况

  1. 国家自然科学基金面上项目,12272069,2023.01-2026.12,55万元,主持

  2. 国家自然科学基金青年科学基金项目,11802019,2019.01-2021.12,30万元,主持

  3. 国家自然科学基金重大科研仪器研制项目(部门推荐),12027901,2021.01-2025.12,承担经费544万元,负责超高温极端环境下材料力学性能实验评价、高温本构与高温强度理论建模课题

  4. 国家人社部博士后创新人才支持计划,BX201600016,2016.08-2018.11,60万元,主持

  5. 重庆市自然科学基金面上项目,cstc2019jcyj-msxmX0038,2019.07-2022.06,10万元,主持

  6. 重庆市人社局出站留(来)渝博士后择优资助项目,2018LY48,2018.12-2021.12,15万元,主持

  7. 机械结构强度与振动国家重点实验室(西安交通大学)开放课题项目,SV2019-KF-25,2019.11-2022.10,5万元,主持

  8. 中国博士后科学基金面上项目(一等资助),2016M600047,2016.11-2018.11,8万元,主持

  9. 中央高校基本科研业务费学院研究专项项目,2019CDXYHK0001,2019.01-2020.11,5.25万元,主持


学术成果

  1. T. B. Cheng*, Insights into Fracture Mechanisms and Strength Behaviors of Two-Dimensional Carbon Fiber Reinforced Silicon Carbide Composites at Elevated Temperatures, Journal of the European Ceramic Society, Vol. 42, No. 1, pp. 71–86, 2022.

  2. T. B. Cheng*, Ultra-High-Temperature Mechanical Behaviors of Two-Dimensional Carbon Fiber Reinforced Silicon Carbide Composites: Experiment and Modeling, Journal of the European Ceramic Society, Vol. 41, No. 4, pp. 2335–2346, 2021.

  3. T. B. Cheng*, Understanding the Ultra-High-Temperature Mechanical Behaviors of Advanced Two-Dimensional Carbon-Carbon Composites, Ceramics International, Vol. 46, No. 13, pp. 21395–21401, 2020.

  4. T. B. Cheng*, X. R. Wang, R. B. Zhang, Y. M. Pei, S. G. Ai, R. J. He, D. N. Fang, and Y. Z. Yang, Tensile Properties of Two-Dimensional Carbon Fiber Reinforced Silicon Carbide Composites at Temperatures up to 2300°C, Journal of the European Ceramic Society, Vol. 40, No. 3, pp. 630–635, 2020.

  5. T. B. Cheng, Z. L. Qu, W. G. Li, and D. N. Fang, Fracture Strength Behaviors of Ultra-High-Temperature Materials, Journal of Applied Mechanics, Vol. 87, No.3, Article ID 031006, 2020.

  6. T. B. Cheng*, R. B. Zhang*, Y. M. Pei*, S. G. Ai, R. J. He, Y. N. Zhao, D. N. Fang*, and Y. Z. Yang, Tensile Properties of Two-Dimensional Carbon Fiber Reinforced Silicon Carbide Composites at Temperatures up to 1800°C in Air, Extreme Mechanics Letters, Vol. 31, Article ID 100546, 2019.

  7. T. B. Cheng, Y. Tao, W. G. Li, L. M. Chen, D. N. Fang, and Y. Z. Yang, Compressive Properties of Chemical Vapor Deposited Zinc Sulfide at High Temperatures, Journal of the Ceramic Society of Japan, Vol. 127, No. 8, pp. 527–530, 2019.

  8. T. B. Cheng*, R. B. Zhang*, Y. M. Pei*, R. J. He, D. N. Fang, and Y. Z. Yang, Flexural Properties of Carbon-Carbon Composites at Temperatures up to 2600°C, Materials Research Express, Vol. 6, No. 8, Article ID 085629, 5 pages, 2019.

  9. T. B. Cheng*, D. N. Fang, and Y. Z. Yang, The Temperature-Dependent Ideal Shear Strength of Solid Single Crystals, Journal of Applied Mechanics, Vol. 85, No. 3, Article ID 031005, 5 pages, 2018.

  10. T. B. Cheng*, D. N. Fang, and Y. Z. Yang, The Temperature Dependence of Grain Boundary Free Energy of Solids, Journal of Applied Physics, Vol. 123, No. 8, Article ID 085902, 5 pages, 2018.

  11. T. B. Cheng*, D. N. Fang, and Y. Z. Yang, Modeling of the Temperature-Dependent Ideal Shear Strength of Solid Single Crystals, Intermetallics, Vol. 93, pp. 299–302, 2018.

  12. T. B. Cheng*, D. N. Fang, and Y. Z. Yang, The Temperature-Dependent Surface Energy of Ceramic Single Crystals, Journal of the American Ceramic Society, Vol. 100, No. 4, pp. 1598–1605, 2017.

  13. T. B. Cheng*, D. N. Fang, and Y. Z. Yang, A Temperature-Dependent Surface Free Energy Model for Solid Single Crystals, Applied Surface Science, Vol. 393, pp. 364–368, 2017.

  14. T. B. Cheng, Y. B. Ma, H. M. Li, D. N. Fang, and Y. Z. Yang, Flexural Properties of Chemical Vapor Deposited Zinc Sulfide at High Temperatures, Journal of Alloys and Compounds, Vol. 729C, pp. 1086–1092, 2017.

  15. T. B. Cheng, W. G. Li, R. B. Zhang, and D. N. Fang, Compressive Strength and Failure Mechanism of Chemical Vapor Deposited Zinc Sulfide from Room Temperature to 600°C, High Temperatures-High Pressures, Vol. 46, pp. 133–140, 2017.

  16. T. B. Cheng, W. G. Li, Z. L. Qu, W. B. Wen, and D. N. Fang, Thermal Shock Resistance of Chemical Vapour Deposited Zinc Sulfide at Elevated Temperatures, Transactions of the Indian Ceramic Society, Vol. 75, No. 4, pp. 215–219, 2016.

  17. T. B. Cheng and W. G. Li, The Temperature-Dependent Ideal Tensile Strength of ZrB2, HfB2, and TiB2, Journal of the American Ceramic Society, Vol. 98, No. 1, pp. 190–196, 2015.

  18. T. B. Cheng, W. G. Li, R. B. Zhang, and D. N. Fang, The Direct Uniaxial Tensile Strength of Chemical Vapor Deposited Zinc Sulfide from Room Temperature to 600°C, Materials Letters, Vol. 158, pp. 140–142, 2015.

  19. T. B. Cheng, W. G. Li, Y. S. Shi, W. Lu, and D. N. Fang, Effects of Mechanical Boundary Conditions on Thermal Shock Resistance of Ultra-High Temperature Ceramics, Applied Mathematics and Mechanics (English Edition), Vol. 36, No. 2, pp. 201–210, 2015.

  20. T. B. Cheng, W. G. Li, Y. S. Shi, and W. Lu, Effects of In-Plane Geometric Shapes on Thermal Shock Resistance of Ultra-High Temperature Ceramic Components, Transactions of the Indian Ceramic Society, Vol. 74, No. 1, pp. 6–10, 2015.

  21. T. B. Cheng, W. G. Li, W. Lu, Y. S. Shi, and D. N. Fang, Thermal Shock Resistance of Ultra-High-Temperature Ceramic Thermal Protection System, Journal of Spacecraft and Rockets, Vol. 51, No. 3, pp. 986–990, 2014.

  22. T. B. Cheng, W. G. Li, C. Z. Zhang, and D. N. Fang, Unified Thermal Shock Resistance of Ultra-High Temperature Ceramics under Different Thermal Environments, Journal of Thermal Stresses, Vol. 37, No. 1, pp. 14–33, 2014.

  23. T. B. Cheng, W. G. Li, and D. N. Fang, Modeling of the Temperature-Dependent Ideal Tensile Strength of Solids, Physica Scripta, Vol. 89, No. 8, Article ID 085803, 16 pages, 2014.

  24. T. B. Cheng, W. G. Li, W. Lu, and Y. S. Shi, Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles, Mathematical Problems in Engineering, Vol. 2014, Article ID 412718, 11 pages, 2014.

  25. T. B. Cheng, W. G. Li, Q. M. Li, H. B. Kou, and D. N. Fang, The Bending Strength of Bulk Polycrystalline Alumina from Room Temperature to Melting Point, High Temperatures-High Pressures, Vol. 43, No. 4, pp. 285–295, 2014.

  26. T. B. Cheng, W. G. Li, and D. N. Fang, Thermal Shock Resistance of Ultra-High-Temperature Ceramics under Aerodynamic Thermal Environments, AIAA Journal, Vol. 51, No. 4, pp. 840–848, 2013.


  27. For the full list of publications, see https://www.researchgate.net/profile/Tianbao_Cheng/research.





欢迎具有力学、机械、土木、物理、材料及相关学科背景的同学报考本课题组的研究生!欢迎相关专业博士毕业生加入课题组从事博士后研究工作!欢迎有需求的单位来渝开展交流与合作!


2023年预计博士生名额:1-2名

2023年预计硕士生名额:2-3名



上一篇:黄培
下一篇:江舟